

Simulation in LabVIEW

Software

- LabVIEW
- LabVIEW Control Design and Simulation Module
 - -This module is used for creating Control and Simulation applications with LabVIEW.
 - –Here you will find PID controllers, etc. The module is available as a palette on your block diagram.

All LabVIEW Software can be downloaded here: www.ni.com/download

Contents

 Block Diagram Simulation based on differential Equations

–Using the Simulation Loop

- PID Control with built-in PID blocks/functions
- Creating and using Simulation Subsystems
- Simulations using a While Loop with Subsystems inside

What is LabVIEW?

LabVIEW = Fun!

Graphical Programming:

- Very different from traditional programming like VB, C#, Maple, MATLAB, MathScript, etc.
- It is more like a "drawing program" than a Programming Language
- This makes it easy to use for those who are not programmers (or dont like programming ⁽ⁱ⁾)
- Excellent tool when using Hardware, when you need to take Measurements (DAQ), etc.
- It is fun and makes you very creative!

LabVIEW Example

LabVIEW has the same things as other programming languages, but in a graphical way!

LabVIEW Environment

Controls and **Functions** Palette

- Controls	You can "pin" them!		ns	Search
Controls Modern Image: Search Numeric Boolean String & Path Image: Search Image: Search Numeric Boolean String & Path Image: String & Path	Front Panel	u create your <u>Code</u> with help of	ese Functions	 Programming Structures Array Cluster, Class Cluster, Class Cluster, Class Comparison Timing Dialog & User Comparison Timing Dialog & User File I/O Waveform Application C Synchronization Graphics & So Report Gener Measurement I/O Vision and Motion Mathematics Signal Processing Data Communication Connectivity Control Design & Simulation SignalExpress Express Addons
You create your <u>User</u>	<u>interface</u> with help o	° [™]	Ē	Lavorites User Libraries

You create your <u>User interface</u> with help of these Controls

Right-click on the Front Panel

Available only from the **Block Diagram**

Select a VI.. Statechart

Customizing Controls and Functions Palettes

Do this for <u>both</u> the **Controls Palette** and the **Functions Palette**

LabVIEW

Recent Project Templates

Set Up and Explore

🕆 🔍 Search 🔍 Customize

CHAN 👻

1

Timing

Timing Node

٨

Real-Time

Channel Const Create Chan.

TRSK 🔫

Task Const

1

Channel Node

DAQ Assist

Set up and learn how to use NI myBIO

myRIO Project

LabVIEW 2014

Create Project

This is the core LabVIEW installation that installs the LabVIEW Programming Environment.

AI

Do a Projec

Read

∼{‱

Start

Read Node

Dev Config

LabVIEW News | Tackling Data Challenges - Four NIWeek 2014 Sessions You Shouldn't Mis

*

-FL

Triggering

于

Triggering N..

Blinking Led Ex

C:\Work\Development\La

Open Existing

LabVIEW MathScript RT Module

NI-DAQmx

This module is a text-based tool that is very similar to MATLAB. The syntax is similar to MATLAB, you can create and run so-called m files, etc. The module is available from the Tools menu inside LabVIEW.

LabVIEW Control Design and Simulation Module

Q

This module is used for creating Control and Simulation applications with LabVIEW. Here you will find PID controllers, etc. The module is available as a palette on your block diagram.

DAQmx is the Hardware Driver needed in order to use hardware devices like NI USB-6008, NI TC-01, etc. inside LabVIEW. The module is available as a palette on your block diagram.

Modelling of Dynamic Systems

These are small-scale processes we have at HiT

Dynamic Systems Examples

Water Tank:

h – Level in the tank

Air Heater:

Mathematical Models (differential equations):

Alt 1 (Integrator):

$$u = \frac{1}{A} \left[K_p u - F_{out} \right]$$

Alt 2 (Time constant/1.order):

$$\dot{h} = \frac{1}{A} \left[K_p u - K_v h \right]$$

Alt 3 (Nonlinear):

$$\dot{h} = \frac{1}{A} \left[K_p u - K_v \sqrt{\frac{\rho g h}{G}} \right]$$

$$\dot{T}_{out} = \frac{1}{\theta_t} \{ -T_{out} + [K_h u(t - \theta_d) + T_{env}] \}$$

T – Temperature in the tube

Dynamic Systems

Dynamic system represented as a differential equation (1.order system):

When we have the block diagram for the system, we can easily implement it in LabVIEW

Simulation in LabVIEW

Control and Simulation in LabVIEW

LabVIEW Control and Simulation Example

We are going to learn to create such a system (and much more)!

The Simulation palette in LabVIEW

Simulation Palette in LabVIEW

	Simulation				
	🗘 🔍 Search	🔦 Customiz	e*		
	*				
	Control & Si	• •	₽ ≎9 ► ■ +■	• 199	
	Signal Gener Si	gnal Arith	Lookup Tables	Utilities	Graph Utilities
	Continuous No	onlinear Sy	Discrete Line	Controllers	Estimation
	Model Fierar In	nplicit Syst	<u>الالالالالالالالالالالالالالالالالالال</u>	Optimal Desi	External Mod
Contin	uous Ľinear	System	IS ×		
🕆 🔍 Search	n 🔌 Custom	ize▼			
	Transport Dela	y			
	S S				
Integrator	Derivative	Transp	ort De		
(A) (B) (C) (D)	H(s)	K	9 0 5-8 5-0		
State-Space	Transfer Fun	. Zero-F	ole-G		
		F			
Continuous	Continuous	. P	D		

Ŷ

Simulation Loop: Similar to a While Loop, but customized for used together with the Simulation Blocks available in LabVIEW

Different Simulation Blocks by Category

- Continuous Systems
- Discrete Systems
- Nonlinear Systems
- etc.

LabVIEW Example

Simulation Example - Configuration

In the example the following simulation parameters could be used (right-click on the Simulation Loop border and select "Configure Simulation parameters..."):

Configure Simulation Parameters		
Simulation Parameters	Timing Parameters	
Simulation Time Initial Time (s)	Final Time	
Solver Method ODE Solver Runge-Kutta 23 (varia	ible) 💌 🔲 Nan/Inf Check	
Continuous Time Ste Initial Step Size (s)	p and Tolerance	
0,01		
Minimum Step Size (s)	Maximum Step Size (s)	
1E-10 🚔	1	
Relative Tolerance	Absolute Tolerance	
0,001	1E-7	
Discrete Time Step Discrete Step Size (s) 0,1	Auto Discrete Time	
Signal Collection Decimation 0		
ОК	Cancel Help	

Synchronize Loop t	to Timing Source		
Timing Source			
Source type			
1 kHz Clock	×		
1 MHz Clock			
1 kHz <reset at="" start="" structure=""></reset>			
Synchronize to Scan F	ngine		
Other < defined by source name or terminal>			
Course			
Source	Source		
Source 1 kHz			
Source 1 kHz			
Source 1 kHz	~		
Source 1 kHz Loop Timing Attribut Period	es		
Source 1 kHz Loop Timing Attribut Period 1000	es		
Source 1 kHz Loop Timing Attribut Period 1000 Offset / Phase	es		
Source 1 kHz Loop Timing Attribut Period 1000 Offset / Phase 0	es Auto Period Priority		
Source 1 kHz Loop Timing Attribut Period 1000 Offset / Phase 0 Deadline	es Auto Period Priority 100		
Source 1 kHz Loop Timing Attribut Period 1000 Offset / Phase 0 Deadline	es Auto Period Priority 100 Timeout (ms)		
Source 1 kHz Loop Timing Attribut Period 1000 Offset / Phase 0 Deadline -1	es Auto Period Priority 100 Timeout (ms) -1		
Source 1 kHz Loop Timing Attribut Period 1000 Offset / Phase 0 Deadline -1 Processor Assignment	es Auto Period Priority 100 Timeout (ms) -1		
Source 1 kHz Loop Timing Attribut Period 1000 Offset / Phase 0 Deadline -1 Processor Assignment Mode	es Auto Period Priority 100 Timeout (ms) -1 V Processor		

Simulation Example - Solutions

PID Control in LabVIEW

Control System $K_p T_i T_d$ e U PID Process PID Algorithm: Sensor $u(t) = K_p e + \frac{K_p}{T_i} \int_0^\tau e d\tau + K_p T_d \dot{e}$ r – Reference Value, SP (Setpoint), SV (Set Value) y – Measurement Value (MV), Process Value (PV) e - Error between the reference value and the measurement value (e = r - y)

- v Disturbance, makes it more complicated to control the process
- Kp, Ti, Td PID parameters

PID Control in LabVIEW

Alternative 1:

PID Palette in LabVIEW (PID Toolkit)

Alternative 2:

Note! The functions "PID.vi" and "PID Advanced.vi" requires that Ti and Td are in minutes, while it's normal to use seconds as the unit for these parameters. You can use the following piece of code in order to transform them:

This means we enter values for Ti and Td in secons on the Front Panel and the values are converted to minutes in the code.

LabVIEW Example

LabVIEW PID Example

$\dot{x} = -ax + bu$ set a = 0.25 and b = 2

PID Example - Solutions

 $\dot{x} = -ax + bu$

set a = 0.25 and b = 2

Front Panel:

PID Example - Solutions $\dot{x} = -ax + bu_{set a = 0.25 and b = 2}$

Block Diagram:

Next Step: Continuous Simulation

	Configure Si	mulation Parameters
Si	imulation Parameters	Timing Parameters
	Simulation Time Initial Time (s) 0	Final Time
	Solver Method ODE Solver	
	Runge-Kutta 1 (Euler)	Nan/Inf Check
	Step Size (s)	p and Tolerance
	0.1	\mathcal{V}
	Minimum Step Size (s)	Maximum Step Size (s)
	1E-10	1
	Relative Tolerance	Absolute Tolerance
	0.001	1E-7
	Discrete Time Step	
	Discrete Step Size (s)	
	0.1	 Auto Discrete Time
	Signal Collection	
	Decimation	
	U 🖣	
	ОК	Cancel Help

Configure Simulation Parameters Simulation Parameters Timing Parameters Enable Synchronized Timing Synchronize Loop to Timing Source Source type 1 kHz Clock	lation in "Real Time"
1 MHz Clock 1 kHz <reset at="" start="" structure=""> 1 MHz <reset at="" start="" structure=""> Synchronize to Scan Engine Other <defined by="" name="" or="" source="" terminal=""></defined></reset></reset>	Right-click on the Simulation Loop border and select "Configure Simulation Parameters"
1 kHz Loop Timing Attributes Period 100 Offset / Phase Priority	
0 100 ↓ Deadline	Add a Stop Button and a "Halt Simulation" block
Processor Assignment Mode Processor Automatic -2 OK Cancel	Stop Button Halt Simulation

PID Example – <u>Continuous</u> Simulation - Solution

Simulation Subsystems

LabVIEW Example

Simulation Subsystem

A Way to structure your code, similar to SubVIs

This is the recommended way to do it! – You can easly reuse your Subsystems in different VIs and your code becomes more structured!

We will change your code above where you create a Simulation Sub System for your Process

Simulation Subsystem - Solutions

Simulation Subsystem 2 (PID Controller)

We will change your code above where you create a Simulation Sub System for the PID Controller as well.

Simulation Subsystem – Solutions2

LabVIEW Example With While Loop

Simulations using a While Loop

Note! The Simulation Loop has some drawbacks/is more complicated to use than an ordinary While Loop. If we use Simulation Subsystems, we can use them inside a While Loop instead! - which becomes very handy!

We will add the Controller and Process Subsystems inside a While loop as shown above

Hans-Petter Halvorsen, M.Sc.

University College of Southeast Norway www.usn.no

E-mail: <u>hans.p.halvorsen@hit.no</u> Blog: <u>http://home.hit.no/~hansha/</u>

